

Intelligent Lessons Learned Systems

David W. Aha

Head, Intelligent Decision Aids Group
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory (Code 5510)
Washington, DC USA
www.aic.nrl.navy.mil/~aha/lessons

IDA Group Members:
Leonard A. Breslow
Héctor Muñoz-Avila (UM)
Rosina Weber (UW)

Department of Energy SELLS Spring 2000 Meeting

Outline

- Observation on Lessons Learned (LL) processes
 - Bkgd: Artificial intelligence, knowledge management, case-based reasoning
 - Focus: <u>Systems</u> for lesson dissemination
- Characterizing LL systems
- Proposal for an intelligent *dissemination* sub-process
 - Motivation
 - Context
- Implementation in a decision support tool (HICAP)
 - Lesson representation
- Initial empirical evaluation
- Related work: Potential contributions from Artificial Intelligence
 - AAAI'00 Workshop on Intelligent Lessons Learned Systems

Knowledge Management (KM)

An increasingly important business movement that promotes knowledge creation, sharing, & leveraging within an organization to maximize business results.

Problems:

Most KM tasks are performed in the context of a well-defined (e.g., business) *process*, and any techniques designed to support KM must be *embedded* in it

Definitions Adopted

Lessons Learned Process (LLP): Implements a strategy for eliciting, retrieving, and reusing lessons obtained from experiential knowledge to continually support an organization (e.g., its decision-making quality).

Lesson: A *validated* record extracted from a (positive or failure) experience with a previous decision process that others in an organization can *reuse* to reinforce a positive result and/or avoid a failure (Secchi et al., 1999).

Lesson Learned: The change resulting from applying a lesson that *significantly* improves a targeted process (Bartlett, 1999).

Lesson Learned System: Software system that supports a LLP.

Abstract Lesson Representation

- Originating action
- Action result
- Contribution
 - i.e., the new knowledge gained from this observation
- Applicable decision, task or process
 - e.g., from the Joint Universal Task List
- Conditions for reuse
 - i.e., an index
- Suggestion(s)
 - i.e., recommended response action, or *recommendation*

Observation on lessons learned systems

- Based on a literature survey,
- The 1999 SELLS Spring Workshop
- The European Space Agency's Alerts and Lessons Learned Workshop (Fall, 1999)
- Relevant literature on knowledge management
- Relevant literature on artificial intelligence
 - AAAI'00 Workshop on Intelligent Lessons Learned Systems

Conclusion: There is an apt popular analogy concerning the overly optimistic expectations for the usage frequency of standalone lessons learned retrieval systems, namely...

If you build it...they will come.

- W. P. Kinsella

Dyersville, Iowa

DOE's Lessons Learned (LL) Process

David W. Aha: Intelligent Lessons Learned Systems

5 April 2000

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Alerts:

- Derived from a negative experience
- Problems with an item used by several organizations
- Typically organized by a group of organizations that share the same technology and suppliers.

Best practices:

- -Successful ideas, applicable to organizational processes
- -Capture only successful stories
- -Not necessarily derived from specific experiences
- -Intended to tailor entire organizational strategies

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Organization type Dissemination ∈ {Adaptable, Rigid}

Adaptable: (e.g., local DOE groups)

- Learned lessons are temporary placeholders of knowledge
- Lessons are incorporated into the process they impact
- A natural behavior of learning organizations (Senge, 1990)

Rigid: (e.g., military)

- Doctrine/manuals cannot be updated quickly
- Some lessons will not ever be incorporated, but are retained
- LL process is not integrated with the targeted processes
- They typically resort to a **standalone** lessons retrieval tool

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Organization type Dissemination ∈ {Adaptable, Rigid}

Process type {Managerial, Planning, Technical}

Often involves only one individual

• e.g., purchasing decisions

Typically distributed decision-making

- e.g., military planning, political campaign planning, resource management considerations
 - e.g., design, construction engineering, equipment maintenance
 - Characteristic of many NASA, ESA, CII, & DOE tasks

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Organization type Dissemination ∈ {Adaptable, Rigid}

Process type {Managerial, Planning, Technical}

Target process relation {Standalone, Embedded}

Not integrated with the decision processes targeted by the lessons

Embedded in the lessons' targeted decision support system

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Organization type Dissemination ∈ {Adaptable, Rigid}

Process type {Managerial, Planning, Technical}

Target process relation {Standalone, Embedded}

Dissemination type {Passive, Active}

Users must search for lessons

Lessons are automatically brought to the user's attention

Characteristics Values

Contents {Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices}}

Organization type Dissemination ∈ {Adaptable, Rigid}

Process type {Managerial, Planning, Technical}

Target process relation {Standalone, Embedded}

Dissemination type {Passive, Active}

Recommendation {Browsable, Executable}

User can only *view* recommendation

User can *execute* recommendation

DOE-Wide LL Process and (Some) Systems

Characteristics	values	
Contents	{Pure, Hybrid ⊆ {Lessons, Alerts, Best Practices	
Organization type	Dissemination ∈ { Adaptable , Rigid}	
Process type	{Managerial, Planning, Technical}	

Target process relation {Standalone, Embedded}

Volum

Dissemination type {Passive, Active}

Characteristics

Recommendation {Browsable, Executable}

Many have invested in LL processes/systems

Air Force

- Air Combat Command Center for Lessons Learned
- Center for Knowledge Sharing Lessons Learned
- Automated Lessons Learned Capture and Retrieval System (ALLCARS)

Army

- Center for Army Lessons Learned (CALL)
- Center for Engineers Lessons Learned (CELL)
- Medical Lessons Learned (AMEDD)
- US Army Europe Lessons Learned Operating System

Coast Guard

• Lessons Learned and Best Practices

Joint Forces

• Joint Center for Lessons Learned (JULLS)

Marine Corps

• Marine Corps Lessons Learned System (MCLLS)

Navy

- Doctrine Command Lessons Learned System
- Combined Automated Lessons Learned (CALL @ NAWCAD)
- Naval Facilities Engineering Command Lessons Learned System

Non-Military

- Construction Industry Institute (Lessons Learned Wizard)
- Decision Systems, Inc. (REASON)
- DOE: Lessons Learned Services, SELLS, Project Hanford LL, etc.
- NASA Lessons Learned Information System
 - International Safety Lessons Learned Information System
- NASA-Goddard: RECALL: Reusable Experience with CBR for Automating Lessons Learned)
- Canadian Army Lessons Learned Centre
- United Nations: UN Lessons Learned in Peacekeeping Operations

(1/21/00)

Department	<u>Inactive</u>	Active	Combined	<u>"neo"</u>
Air Force	0	16,092	16,092	24
Joint	8,695	1,396	10,091	147
Marines	8,872	2,591	11,463	72
Navy	6,272	5,072	11,344	110
Totals	23,839	25,151	48,990	353

NEO = \underline{N} oncombatant \underline{E} vacuation \underline{O} peration

 Characteristics	Values		
Contents	$\{$ Pure, Hybrid $\subseteq \{$ Lessons, Alerts, Best Practices $\} \}$		
Organization type	Dissemination ∈ {Adaptable, Rigid }		
Process type	{Managerial, Planning, Technical}		
Target process relation	{ Standalone , Embedded}		
Dissemination type	{Passive, Active}		
Recommendation	{Browsable, Executable}		

Standalone, Passive, Browsable Lesson Dissemination Sub-Process

Problem: Standalone, passive, browsers do not promote knowledge sharing

Reasons:

System issue

• they are not well-integrated with other organizational processes

Information issue

• lessons are often not well-defined, or are incomplete

Unrealistic user assumptions

- users know about LL systems, and where to find them
- users have the time and the skills to search (i.e., learn to use) them
- users can correctly interpret the lessons and reuse them successfully
- users are reminded of their possible utility when needed

Specifications for effective Lessons Learned systems

Assumption: Targeted decision process is on-line

- Fully integrate the lessons learned process with the lessons' targeted decision processes.
- Shift burden from user to machine.
 - Lessons are automatically brought to the user's attention rather than forcing the user to fetch them (in a separate process).
- Automate lesson interpretation and recommendation.
 - In their intended application's context
- Ensure user control.
 - User decides whether to accept a recommendation
 - Minimize number of unwanted intrusions

From Separate to Integrated Processes

Embedded Lessons Delivery

AJHA (DOE, Hanford Site) LL System

(Bickford, 2000)

Characteristics	Values		
Contents	{ Pure , Hybrid ⊆ {Lessons, Alerts, Best Practices}}		
Organization type	Dissemination ∈ {Adaptable, Rigid }		
Process type	{Managerial, Planning , Technical}		
Target process relation	{Standalone, Embedded}		
Dissemination type	{Passive, Active}		
Recommendation	{Browsable, Executable}		

Proposal: Intelligent Lessons Delivery

(Weber et al., 2000)

Benefits of Intelligent Lessons Delivery

- User doesn't need to know the LL module exists
- Reduced training/usage time
 - User doesn't need to learn a new process to use it
 - User is told about the lesson only if it is useful
- Lesson recommendations in context
 - Users do not need to interpret lessons
 - Suggestions are related to the current decision

Context: Deliberative Planning for Noncombatant Evacuation Operations (NEOs)

- Goal: Assist DOS to evacuate noncombatants, nonessential military personnel, host-nation citizens, and third country nationals whose lives
- Characteristics:
 - Joint task force (often multinational)
 - Uncertainty
 - Complex (200+ tasks); Distributed
 - US Ambassador is senior authority

- Planning: Responsibility of geographic combatants Resources: Doctrine, Exercises, DOS, EAP, etc.
- •Problem: Lack of Computing Support!

Implementation in HICAP: A Plan Authoring Module

<u>Hierarchical Interactive Case-based Architecture for Planning</u>

- Bridges the gap between doctrine and (modular!) experiences
- Java 1.2: www.aic.nrl.navy.mil/~aha/cbr/hicap.html

